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Equivalent Circuit Models for Three-Dimensional

Multiconductor Systems

ALBERT E. RUEHLI, MEMBER, IEEE

Abstract—Multiconductor or multiwire arrangements find many
applications in electronic systems. Examples are interconnections
between digital circuits or integrated microwave circuits. Equivalent
circuit modéls are derived here from an integral equation to establish
an electrical description of the physical geometry. The models, which
are appropriately called partial element equivalent circuits (PEEC),
are general in thdt they include losses. Models of different complexity
can be constructed to suit the application at hand.

I. INTRODUCTION

ULTICONDUCTOR or multiwire arrangements

L find many applications in electronic systems, e.g.,
the intercommunications between digital logic circuits
[1] or mierowave integrated cireuits [27]. Several methods
are available today for the analysis of a set of long parallel
wires close to a common conducting plane [3]-[5]. Two-
dimensional approximations are, however, not applicable
to an important class of three-dimensional conductor
arrangements. These geometries consist of conductors
that may be highly intercoupled because of the absence
or remoteness of a common ground plane. Examiples of
three-dimensional geometries are integrated circuit pack-
ages and wires or conductors located on dielectric layers
with remote ground planes. These geometries may be
viewed as “consisting of discontinuities” from a trans-
mission line point of view and are not easily amenable to
analysis. However, additional electrical desigh flexibility
is obtained above two-dimensional striplines for many
applications due to the multitude of relative conductor
locations possible.

The purpose of this paper is to present a theory for an
approximate computer modeling approdch for three-
dimensional geometries that is appropriately called partial
element -equivalent circuit (PEEC) analysis. The PEEC
method is based on an integral equation description of the
geometry that is interpreted in terms of circuit elements.
The circuit elements, viz., the partial inductances and
partial capacitances, can be found frém computer solu-
tions, as Has been shown previously [6]-[9]. A general-
purpose network analysis program [107]-[127] is then used
to obtain voltages and currents in both the time domain
and the frequency domain. Time domadin results are given
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here and elsewhere [137] since they encompass a wide
frequency spectrum.

The formulation presented here affects three seemingly
different subject areas. First, it provides a more compre-
hensive interpretation of the relations between circuit
theory and field theory [14]. Second, it may be considered
as an extension of an integral equation solution for induct-
ance computations [157] in that it includes capacitance.
Third, it relates to multiwire antennas [167], which corre-
sponds to the formulation below if retardation times are
included.

A basic integral equation approach is discussed in Sec-
tion I1, while an intefpretation in terms of inductances is
considered in Section III. The portion that relates to
capacitance is the subject of Section 1V, and in Section V
theé relation to retardation times is discussed. In Seétion
VI circuit interpretations are considered, while in Seétion
VII an example is given and further approximations are
discussed.

II. InTEGRAL EqQUaTION FORMULATION

The unknowns in a multiconductor or multiwire system
are the charges on the surfaces and the.current dersities
within the conductors. An integral equation solution is
appropriate for problems with large frée-space regions
since a differential equation formulation would require
that all regions including the free space be described by
nodes.

The approximate integral equation solution pursued
here is based on the summation of all sources of electric
fields within a conductor [14], orJ /o = Ey, — 94 /0t — V.
Here, J is the current density in the conductor of con-
ductivity o, and A and & are the vector and scalar poten-
tials, respectively.

J(Fb) + A (7,0)

T ot

where 7 is the vector from the origin. The vector potential
A for K conductors is

K .
iy = L[ ReMIEH W (@
k=1 4r ok
where the retarded time is given by
Moo= — =] (€npir) V2 (3)
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for uniform regions with properties ¢, ur, where ¢ repre-
sents the speed of light. The function K is defined by

E=rak 4)
Similarly, the scalar potential ® ig

z /K(rr’)q(r O, ()

k—l
Inserting (2) and (5) into (1) leads to
Fy(rt) = 100
ag

+ 3 2 [ = / R(7#)F (1) dv’]

k=1

K
+Xv [ﬁ [ RE#a 0 dv’]. (6)

As a first step towards a PEEC representation, the un-
known quantities are approximated as locally constant
functions. The-current density is represented in terms of
orthogonal components, or J = J.& + J,§ + J.2, where
the components are locally constant over cells to be chosen.
A rectangular volume cell is defined by a pulse function
[167] as P, = 1 on the ynkth volume cell and is O else-
where. Here, v = z,y,2 and nk represents the nth element
on conductor k. The current density is then expanded as

Ny
Jn(t') = 3 Py yur () (7)
n=1
where ¢, is an approximation of ¢’ and is given by
N |7 =7l (enptr) 2, (8)

The vector 7, extends to the center of the source volume
cell, and N, is the total number of cells in the v direction
on conductor k. The expansion funection (7) is inserted
into the general equation (6) to yield

B (7t) = 120

K N

TR U R(7) dv ]%&U_)

k_lav[ /KW)q(r 4 dv:l

+ 2 9
for v = z,y,2.

Furthermore, the charge density is written as another
expansion function of the same type. Sinee the free charge
is restricted to the outside surfaces of all conductors,
q(F) is a surface layer charge density rather than a volume
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quantity. Hence, the expansion function for the charge
density is

@ (bm) = Z Dot (tm) (10)

m=1

where M, includes all surface cells charged with a locally -
constant charge density. The extent of the surface cell
is defined as pmr = 1 on the mth eell and is O elsewhere.
An example is given for an appropriate choice of the cells,
before this development is carried further. The number of
network nodes specified within a conductor determines
the size of the cells and, ultimately, the complexity of the
networks. The number of nodes should not be exceedingly
large for practical solutions. Fig. 1 shows a choice of cells
for the most general case, a conductor with finite thickness
for all three directions of current flow. The dividing lines
are called inductive-resistive partitions and the choice of
the cells at each node in uniquely given by the nodes. An
appropriate division of the conductor surface into mutually
exclusive uniformly charged cells is shown in Fig. 2. The
dividing lines that disconnect the surface electrically are
called capacitive partitions. The elements of the equivalent
circuits are fully determined by these cells.

It is recognized that the applied field E, is 0 for the
circuit problem under consideration. A set of coupled
equations is obtained next by integration of (9) separately
over all volume cells into which the K conductors are
divided. Integration over the Ith cell in one of the con-
ductors leads to “

r4 z
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Fig. 1. Volume cells for currents in rectangular conductor.
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PFig. 2. Surface cells for capacitive partitions for rectangular
conductors.
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1
—f Ja,(f,t) d?)z
[

Lr R [// K(w')owoz]M

=1 n=1 471‘ 1" vnk 8t
k1 9 oo _

+r 2 /K(r,r’)q(r’,t’) ds' |dv, = 0 (11)
j1 4me 297 LY g

where v = z,,2 as previously, where the charge density is
included as a surface quantity in (11). Next, (11) is
divided by the eell cross section a; perpendicular to the
direction of current flow. The local approximations used
here to find network elements are the same as are used in
finite difference techniques. The first term on the left-
hand side of (11) is then interpreted as the resistive
voltage drop along the cell v, = R.,ZI ; and (11) is re-
written as v, + vy + v, = 0.

ITT. InpUcTANCE TERM

The second term on the left-hand side is rewritten in
terms of the total current through the cell as

X M . Lyt (t)
DL——ZZ[tlrazaW,// R (77) dv' dv ] Py

k=1 n=1

(12)

If the kernel (4) is inserted into (12), the term in
brackets is recognized to be in the form of partial in-
ductances [6], with the sums representing the coupling
among them:

K Ny

v = 3 X Lps, m

k=1 n=1

I:I‘mk(tnk)] (13)
Again, the inductances of straight conductor segments
corresponding to the cells are called partial inductances
Lyi, to avoid confusion with the loop inductances L.
_ The currents I,.; are for most practical systems instan-
taneous in that t, = ¢ in (8), due to physical smallness.
For widely spaced segments in uniform regions, retarded
partial inductances can be defined since the retardation
depends on the physical distance.

IV. Caracrtive TerM

It is next shown that the last term in (11) corresponds
to capacitive coupling. The inside integral is defined as
F(v) & Js.. Kqds’ over the local surface cells defined in
(10). Then the integral in the v coordinate is approxi-
mated as '

2rwmes[r(+2)r(-2)]
(14)

This shows that the capacitive cells in Fig. 2 are shifted
from the cells in Fig, 1 by half the size of a cell. If the
above results are applied to (11) and use is made of (10),
a circuit-type equation results, or
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K M;
=X [qu(tmk) f K (F+,7) ds
k=1 m=1 Smk

— k) / R (o) ds’] . (15)
Smk

The vector associated with the positive end of the lth cell
is designated with a + sign while the negative lead is
indicated with a — sign. The retarded time refers to the
center of the volume cell, in the same way as for the partial
inductances. The kernel for the integrals in (15) is re-
written as a Green’s function G = K/4we. Then (15) is

i Aﬁ G (Emic) [/ G(7t,7) ds'

k=1 m=1 Somk

- [ e ds’]. (16)

Smk

With the total charge on the mkth cell given by Qu: =
GmiOmk, the terms in (16) can easily be interpreted as

K M;
=2 2 Qui(tws) [PPieneyt — PPumny™]  (172)
k=1 m=1
where in general
1
ppy = — f G (7 ds'. (17b)
a; 8;

Equation (17) is clearly in the form of partial coefficients
of potential (7), which is essentially the same as the
coefficients of potential except that partial surfaces of a
conductor are involved. Equation (17a) represents the
voltage differences V,, = ®; — ®, across the elements. To
further extend the definition, retarded partial coefficients
of potential are defined that include the specification of
the retardation time. Since the charges reside on the con-
ductor surfaces, the potentials are only due to nodes
external to the conductors. Therefore, generalized partial
coefficients of potential can be written in matrix form as

®,° pp?
= 0
®,° pp?

(18)

where ®° and pp‘ correspond to the internal nodes, while
&7, pp, and Q, refer to the surface cells.

V. RerarpaTion Time

The formulation given above is general in that it in-
cludes retardation times for widely spaced objects in a
uniform dielectric region. As indicated in Sections III and
V1, retarded partial inductances and retarded coefficients
of potential can be defined for a network interpretation of
the formulation. A basic difference between the wire
antenna problem [16] and the interconnection systems
considered here is that retardation times are large for the
former, while for the latter they may be ignorably small,
Furthermore, the coupling of minute signals from the
antenna to the receiver is of interest. In contrast, for
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circuit-type geometries only relatively strong intercoupling
is of interest. This immediately suggests that sparsity can
be introduced into the interactions by ignoring small
coupling terms. For most situations, the small coupling
elements are also the ones having larger retardation time.

VI. CircUurT INTERPRETATION

The surface portion of (18) can be interpreted in terms
of multicapacitances for ignorably small retardation times.
Coeflicients of partial capacitance are defined elsewhere
[7] as ¢p = pp™!, which corresponds to a full network of
capacitances for the partial surfaces. Partial capacitances
that are obtained from exact computations [7]-[97] repre-
sent a local improvement over the uniformly charged cells
assumed above. The second portion of (18) must be
interpreted as a set of dependent charge-controlled poten-
tial sources for nodes inside the conductors. A differential
relation can be obtained for these nodes from (17) as

K M;

by = 22 20 L[ PPstmtst — DPicmiy™]

k=1 m=1

(19)

where ¢ represents all internal nodes and I is the capacitive
node current. To summarize, the capacitive terms for the
surface nodes are taken into account by a set of multi-
capacitances, while internal nodes are represented by
charge-controlled voltage sources. An example is given in
Fig. 3 for a complete equivalent circuit for a corner of the
rectangular conductor shown in Figs. 1 and 2. The induct-
ances in the equivalent circuit are simply the partial
inductances [6] of the cells while the cell resistance com-
putations are trivial. The equivalent circuit is entered
into a general-purpose network analysis program [107}-
[12] to obtain the responses of interest. This solution
approach results in a very flexible computer tool. Essen-
tially, three types of analysis are performed—capacitance,
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6
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Fig. 3. Equivalent cireuit for corner of a conductor.
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inductance, and network analysis. General formulations
exist for all these tasks such that responses for a wide
range of geometries can be computed.

VII. APPROXIMATIONS AND RESULTS

For circuit geometries of practical interest all conductors
are assumed to be located on a set of parallel planes.
Static Green functions are used to approximate the inclu-
sion of layers with different dielectric constants. These
Green functions are available from three-dimensional
capacitance computation methods [7]-[9]. In fact, for
most circuit-type geometries they are directly included in
the capacitances computed. Close agreement has been
obtained between a measurement and responses from a
PEEC solution for loops located on a dielectric substrate
for fast rising pulses with a spectrum into the gigahertz
range [13].

An approximate description of the geometry often results
in considerable savings in set-up and computation time.
Responses for models of a different complexity are com-
pared to find whether sufficiently small cells have been
chosen. An example is again given in [137]. The change of
L and R with frequency is less pronounced for conductors
that are not closely spaced and that are not located near
ground planes. Thus very often the conductors can be
represented by a few nodes only. A typical example for
rather large loops is given in Fig. 4. The responses of
interest are found in the time domain rather than fre-
quency domain using the ASTAP program [12]. The
cross section of the conductors is 1.2 mm X 50 um, while
the horizontal geometry shown in Fig. 4 is located on a
substrate with ¢, = 4. A discussion is appropriate concern-
ing the choice of the cells for the problem at hand. The
long and thin conductors are not divided further in the
cross-sectional dimensions. Partitions that delimit the
inductance and capacitance cells are chosen at convenient
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Rg+ Vg—

| CLI
. 7 /

INDUCTIVE PARTITION

61 mm

CAPACITIVE
> PARTITIONS
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|

|

I
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|

|

Fig. 4. Conductors on insulating substrate.
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Fig. 6. Time domain response.

points along the length of the conductors as indicated in
Fig. 4. The series resistance of the wires is ignored for this
case and all retardation times are assumed to be 0. The
source and loads can be arbitrary but an arrangement is
chosen here that permits a measurement. The PEEC model
shown in Fig. 5 is based on the relatively large cells chosen,
yet they lead to a rather accurate representation of the
time domain responses shown in Fig. 6 with only 17 cir-
cuit elements. The two responses shown are examples
with or without Cr connected. The partial capacitances
Cypi, [ 7] listed in Table I are in ““node-pair form,” a repre-
sentation that is obtained by transforming all capacitances
to the node at infinity in parallel to the node-pair capaci-
tances. This is obtained by a generalized star-triangle
transformation.,

VIII. CoNCLUSIONS

The PEEC models presented in this paper lead to a
flexible solution technique both in the time domain and
the frequency domain mainly due to the availability of
computer formulations. Essentially, three computer analy-
ses must be performed, viz., inductance computations,
capacitance computation, and network analysis. The series
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TABLE I

LisT or NETWORK ELEMENTS
R_ = 50 Loss = 21 Cprz = +61
R, = 300 Logs = 59 13 = .525
RL2 = 50 Lp77 = 20 Cp14 = ,225
c =8 Lois = 14.7 Co15 = 725
., =27 Lote = -10.6 Coa3 = .285
o11 = 57.2 Logy = 2 025 = 275
Looo = 10.2 Lose = -7.7 Cpa = .125
Loy3 = 621 Logs = 2-4 Cozs = .275
LP44 = 11.6 L];>57 = ~1 Cp45 = ,225

R in ohms; L in nH; C in pF

resistance can usually be found from simple calculations.
Changes in the geometry are easily accomodated since
general computer solutions are involved in the task.

1t is noted that the PEEC models are rather inefficient
for two-dimensional geometries, especially if a high degree
of resolution is required. For three-dimensional geometries,
very good results are obtained with a few elements only,
as is exemplified in Section VII.
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An lterative Approach to the Finite-Element Method
in Field Problems

W. KINSNER, MeMBER, IEEE, AND EDWARD DELLA TORRE, SENIOR MEMBER, IEEE

Abstract—An iterative approach to the finite-element method is
presented. Several finite-element formulations are presented for the
Laplace, Poisson, and Helmholtz equations. These formulations
permit iterative solutions. The convergence of the vector sequences
generated by the iterative method is accelerated using successive
extrapolation and other methods. Accuracy and convergence of the
solutions are discussed.

I. InTrRODUCTION

HE THEORETICAL background of the finite-
element method has been given by Aubin [17.
Other authors [27], [3] have introduced some practical
aspects of the method as applied to structural mechanics.
Silvester [4] and others [5], [167], [20]-[22] discussed
the method as applied to the electromagnetic field prob-
lems. Convergence of the method, as a function of the
relative size of the discretizing elements and the order of
the approximating polynomials, is discussed in many
recent mathematical and technical journals [6]. In
particular, explicit discretization errors are given in [17,
[27, [6], and [7], and some experimental results are given
in [5] and [8].
The variational formulation of waveguide problems,
using complete polynomials, leads to the general eigen-
value problem

Ax = \Bx (1)

where A and B are symmetric positive-definite n X n
band matrices, A is the eigenvalue(s) and x the eigen-
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vector(s) associated with the particular eigenvalue(s).
It is noted that for the H modes A is only semidefinite.
The finite-difference formulation of these problems also
leads to (1), however, the matrix B is the identity matrix,
and A is not necessarily symmetric.

A variety of methods for solving (1) have been pre-
sented (e.g., [9], [10], and [127). The finite-difference
solutions most frequently employ iterative techniques
and the finite-element solutions almost exclusively use
direct methods.

Iterative methods for solving eigenvalue problems may
be divided into two categories. The first methods use the
fact that eigenvectors of a system form a linearly inde-
pendent set which spans an » dimensional space. The
methods in the second category use the property that the
generalized Rayleigh quotient

xTAx
xTBx

is equal to an eigenvalue and is stationary when x is the
corresponding eigenvector. A method using this property
with Fletcher-Powell iteration has been described [137.
These methods combined with the deflation or ortho-
gonalization yield, however, only partial eigensolutions,
ie., the dominant and several closest eigenvectors. An
iterative method for the complete eigensolution shall be
presented.

II. FiNniTE-ELEMENT FORMULATION

Let R be either a simply or multiply-connected bounded
region in an n dimensional space V* with boundary T.
The boundary T' consists of a finite number of closed,
nonintersecting hypersurfaces T, (A = 0, ---, 7) such



