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Equivalent Circuit Models for Tliree-Dirnensional

Multiconductor Systems

ALBERT E. RUEHLI, MEMBER, IEEE

~lxtract—Multiconductor or multiwire arrangements find many

applications in electronic systems. Examples are interconneciioris

between digital circuits or integrated microwave circuits. Equivident

circuit models are derived here from an integral equation to establish

an electrical description of the physical georheiry. The models, which

are appropriately called partial elefient equivalent circuits (PEEC),

are general iri thdt they iriclude losses. Models of different complexity

can be crmstructed, to suit the application at htid.

I. INTRODUCTION

M
ULTICONDUCTOR or rnultiwire arrangements

find many applications in electronic systems, e.g.,

the intercommunications between digital logic circuits

[1] or microwave integrated circuits [2]. Several methods

are available today for the analysis of a set of long parallel

wires close to a common conducting plane [3]–[5]. Two-

dimensitmal approximations are, however, not applicable

to an important class of three-dimensional conductor

arrangements. These geometries consist of conductors

that may be highly intercoupled because of the tibsence

or remoteness of a comon ground plane. Examples of

three-dimensional geometries are integrated circuit pack-

ages and wires or conductors located on dielectric layers

with remote ground planes. These geometries may, be

viewed as i ‘consisting of discontinuities” from a trans-

mission line point of view afid are not easily amenable to

analysis. However, additiorial electrical design flexibiM y

is obtained above two-dimensional striplines for many

applications due to the multitude of relative conducto~

locations possible.
The ptirpose of this paper is to present a theory for an

approximate computer modeling approrich for, three-

dimensional geometries that is appropriately called partial

element equivalent circuit (PEEC) analysis. The PEEC

method is based on an integral equation description of the

geometry that is interpreted in terms of circuit elements.
The circuit elements, tiiz., the partial inductances and
partial capacitances, can be found from computer solu-

tions, as has been shown previously [G]–[9]. A gene:al-

purpose network analysis pr~gram [lCi3-~12] is then used

to obtain voltages and currents in both the time domain

and the frequent y domain. Time domain results are gi+en
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here and elsewhere [13] since they encompass a wide

frequency spectrum.

The formulation presented here affects three seemingly

different subject areas. First, it provides a more compre-

hensive interpretation of the relations between circuit

theory and field theory [14]. Second, it maybe considered

as an extension of an integral equation solution for induct-

ance computations [15] in that it includes capacitance.

Third, it relates to multiwire antennas [16], which corre-

sponds to the formulation below if retardation tirhes are

included.

A basic integral equation approach is discussed in Sec-

tion II, while an interpretation in terms of inductances is

considered in Secticm III. The portion that relates to

capacitance is the subject of Section IV, and in Section V

the relation to retardation times is discussed. In Section

VI circuit interpretations are considered, while in Section

VII an example is given and further approximations are

discussed.

II. INTEGRAL EQUATION FORMULATION

The unknowns in a multiconductor or multiwire system

are the charges on the surfaces and the. current densities

within the conductors. An integral equation solution is

appropriate for problems with large free-space regions

since a differential equation formulation would require

that all regions including the free space be described by

riodes.

The approximate integral equation solution pursued

here is based on the smnmation of all sources of electric

fields within a conductor [14], or~lu = ~, – d~/Ot – V+.

Here, ~ is the current density in the conductor of con-

ductivity u, and ~ and @ are the vector and scalar poten-

tials, respectively.

Eo(?,t) =
J(F,t) ad (?,t)
—+7 + v@(F,t) (1)

i?

where P is the vector from the origin. The vector potential

~ for K conductors is

‘P
~ (F,t) = ~~, ~ / l?(~,?’)j(r’,t’) dv’ (2)

.k

where the retarded time is given by

t,=t_l~–~’l
(%.%) ‘l’ (3)

c
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for uniform regions with properties e,, W, where c repre-

sentsthe speed of light. Tbefunction l?is defined by

R(T7”)Q , ~ : # ,“

Similarly, the scalar potential @ is

‘1
@(T,t) = ~—] I?(7,F)q(?’,t’) dv’.

~=l!tlm ~,

Inserting (2) and (5) into (1) leads to

J(?,t)
Eo(?,t)=—

u

[
+;l ‘/ ~(~,~’)~(~’,t’)d~’

~=1at 47r W, 1
K r-e 1

(4)

(5)

1+ ~ V & j I?(?,T’)rf(P’,t’) dV’j . (6)
k’=1 Qk

As a first step towards a PEEC representation, the un-

known quantities are approximated as locally constant

functions. The- current density is represented in terms of

orthogonal components, or J = J.k + JVG + J.% where
the components are locally constant over cells to be chosen.

A rectangular volume cell is defined by a pulse function

[16] as P7~~ = 1 on the @cth volume cell and is O else-

where. Here, Y = x,y,z and nk represents the nth element

on conductor k. The current density is then expanded as

N.yk

J7k (t’) = ~ l’7m,JVnk (k)
%=1

where t.is an approximation of t’and is given by

The vector FS extends to the center of the source

(7)

(8)

volume

cell, and N7~ is the total number of cells in the y direction

on conductor k. The expansion function (7) is inserted

into the general equation (6) to yield

Jy(F,t)
E,,(?,t) = —

u

for y = x,y,.z.

Furthermore, the charge density is written as another

expansion function of the same type. Since the free charge

is restricted to the outside surfaces of all conductors,

q(F) is a surface layer charge density rather than a volume

quantity. Hence, the expansion function for the charge

density is

Mh

qk(tn) = x p?nkqmk (k) (lo)
m=l

where Mk includes all surface cells charged with a locally

constant charge density. The extent of the surface celll

is defined as j%nk = 1 on the rnth cell and is O elsewhere,

An example is given for an appropriate choice of the cells,

before thk development is carried further. The number of

network nodes specified within ~ conductor determines

the size of the cells and, ultimately, the complexity of the

networks. The number of nodes should not be exceedingly

large for practical solutions. Fig. 1 shows a choice of cells

for the most general case, a conductor with finite thickness

for all three directions of current flow. The dividing lines

are called inductive–resistive partitions and the choice of

the cells At each node in uniquely given by the nodes. An

appropriate division of the conductor surface into mutually

exclusive uniformly charged cells is shown in Fig. 2. The

dividing lines that disconnect the surface electrically are

called capacitive partitions. The elements of the equivalent

circuits are fully determined by these cells.

It is recognized that the applied field l?, is O for the

circuit problem under consideration. A set of coupled

equations is obtained next by integration of (9) separately

over all volume cells into which the K Conductors are

divided. Integration over the lth cell in one of the con-

ductors leads to

Fig. 1. Volume cells for currents in rectangular conductor.
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Fig. 2. Surface cells for capacitive partitions for rectangular
conductors.
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where y = x,y,z as previously, where the charge density is

included as’ a surface quantity in (11). Next, (11) is

divided by the cell cross section al perpendicular to the

direction of current flow. The local approximations used

here to find network elements &e the same as are used in

finite difference techniques. The first term on the left-

hand side of (11) is then interpreted as the resistive

voltage drop along the cell v, = RTZIYJ and (11) is re-

written ?s v, + VL + V. = 0.

III. INDUCTANCE TERM

The second term on the left-hand side is rewritten in

terms of the total current through the cell as

(12)

If the kernel (4) is inserted into (12), the term in

brackets is recognized to be in the form of partial in-

ductances [6], with the sums representing the coupling

among them:

K NW

VL = ~ x LPLYn~ $ [Irk(k) 1. (13)
/+=1 n=l

Again, the inductances of straight conductor segments

corresponding to the cells are called partial inductances

Lpi, to avoid confusion with the loop inductances Lij.

The purrents I,~k are for most practical systems instan-

taneous in that k = t in (8), due to physical smallness.

For widely spaced segments in uniform regions, retarded

partial inductances can be defined since the retardation

depends on the physical distance.

IV. CAPACITIVE TERM

It is next shown that the last term in (11) corresponds

to capacitive coupling. The inside integral is defined as
F(7) A f,., l?q cts’ over the local surface cells defined in

(10). Then the integral in the ~ coordinate is approxi-

mated as

(14)

This sh~ws tha$ the capacitive cells in Fig. 2 are shifted

from the cells in Fig. 1 by half the size of a cell. If the

above results are applied to (11) and use is made of (10),

a circuit-type equation results, or

K Mb

[

1
v. = x ~ qmk(tmk) —

\
2? (7z+,?’) ds’

k=l m=l 47K /gmk

MARCH 1974

The vector associated with the positive end of the lth cell

is designated with a + sign while the negative lead is

indicated with a — sign. The retarded time refers to the

center of the volume cell, in the same way as for the partial

inductances.. The kernel for the integrals in (15) is re-

written as a Green’s function G = K/47rc. Then (15) is

K Mk r,

— J 1
G(?z-,?’) ds’ . (16)

S71A

With the total charge on the rnkth cell given by Q~k =

qmkamk, the terms in (16) can easily be interpreted as

k=l m=]

where in general

1
ppij = –

/
G (7,,7’) ds’.

aj Si
(17b)

Equation (17) is clearly in the form of partial coefficients

of potential (7), which is essential] y the same as the

coefficients of potential except that partial surfaces of a

conductor are involved. Equation (17a) represents the

voltage differences Vij = @i — @j across the elements. TO

further extend the definition, retarded partial coefficients

of potential are defined that include the specification of

the retardation time. Since the charges reside on the con-

ductor surfaces, the potentials are only due to nodes

external to the conductors. Therefore, generalized partial

coefficients of potential can be written in matrix form as

[1[1
*P’ PP’
---- = ---- Q, (18)
*pi PPi

where @ and ppi correspond to the internal nodes, while

@J.’,pps, and Q. refer to the surface cells.

V. RETARDATION TIME

The formulation given above is general in that it in-

cludes retardation times for widely spaced objects in a

uniform dielectric region. As indicated in Sections III and

VI, retarded partial inductances and retarded coefficients

of potential can be defined for a network interpretation of

the formulation. A basic difference between the wire

antenna problem [16] and the interconnection systems

considered here is that retardation times are large for the

former, while for the latter they may be ignorably small.

Furthermore, the coupling of minute signals from’ the

antenna to the receiver is of interest. In contrast, for
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circuit-type geometries only relatively strong intercoupling

is of interest. This immediately suggests that sparsity can

be introduced into the interactions by ignoring small

coupling terms. For most situations, the small coupling

elements are also the ones having larger retardation time.

VI. CIRCUIT INTERPRETATION

The surface portion of (18) can be interpreted in terms

of multicapacitances for ignorably small retardation times.

Coefficients of partial capacitance are defined elsewhere

[7] as cp = pp-’, which corresponds to a full network of

capacitances for the partial surfaces. Partial capacitances

that are obtained from exact computations [7]–[9] repre-

sent a local improvement over the uniformly charged cells

assumed above. The second portion of (18) must be

interpreted as a set of dependent charge-controlled poten-

tial sources for nodes inside the conductors. A differential

relation can be obtained for these nodes from (17) as

K Mb

V,+,- = ~ ~ Imk[ppi(mk)+ – Ppi(mk)-] (19)
k=l m-l

where i represents all internal nodes and I is the capacitive

node current. To summarize, the capacitive terms for the

surface nodes are taken into account by a set of multi-

capacitances, while internal nodes are represented by

charge-controlled voltage sources. An example is given in

Fig. 3 for a complete equivalent circuit for a corner of the

rectangular conductor shown in Figs. 1 and 2. The induct-

ances in the equivalent circuit are simply the partial

inductances [6] of the cells while the cell resistance com-

putations are trivial. The equivalent circuit is entered

into a general-purpose network analysis program [10]–

[12] to obtain the responses of interest. This solution

approach results in a very flexible computer tool. Essen-

tially, three types of analysis are performed-capacitance,

inductance, and network analysis. General formulations

exist for all these tasks such that responses for a wide

range of geometries can be computed.

VII. APPROXIMAIrIONS AND RESULTS

For circuit geometries of practical interest all conductors

are assumed to be located on a set of parallel planes.

Static Green functions are used to approximate the inclu-

sion of layers with different dielectric constants. These

Green functions are available from three-dimensional

capacitance computation methods [7]–[9]. In fact, for

most circuit-type geometries they are directly included in

the capacitances computed. Close agreement has been

obtained between a measurement and responses from a

PEEC solution for loops located on a dielectric substrate

for fast rising pulses with a spectrum into the gigahertz

range [13].

An approximate description of the geometry often results

in considerable savings in set-up and computation time.

Responses for models of a different complexity are com-

pared to find whether sufficient] y small cells have been

chosen. An example is again given in [13]. The change of

L and R with frequency is less pronounced for conductors

that are not closely spaced and that are not located near

ground planes. Thus very often the conductors can be

represented by a few nodes only. A typical example for

rather large loops is given in Fig. 4. The responses of

interest are found in the time domain rather than fre-

quency domain using the ASTAP program [12]. The

cross section of the conductors is 1.2 mm X 50 pm, ‘while

the horizontal geometry shown in Fig. 4 is located on a

substrate with CT= 4. A discussion is appropriate concern-

ing the choice of the cells for the problem at hand. The

long and thin conductors are not divided further in the

cross-sectional dimensions. Partitions that delimit the

inductance and capacitance cells are chosen at convenient
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Fig. 3. Equivalent circuit for corner of a conductor. Fig. 4. Conductors on insulating substrate.
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Fig. 5. Partial element equivalent circuit. Partial capacitances
labeled according to node numbers.
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Fig. 6. Time domain response.

points along the length of the conductors as indicated in

Fig. 4. The series resistance of the wires is ignored for this

case and all retardation times are assumed to be O., The

source and loads can be arbitrary but an arrangement is

chosen here that permits a measurement. The PEEC model

shown in Fig. 5 is based on the relatively large cells chosen,

yet they lead to a rather accurate representation of the

time domain responses shown in Fig. 6 with only 17 cir-

cuit elements. The two responses shown are examples

with or without CL2 connected. The partial capacitances

(7Pi, [7] listed in Table I are in “node-pair form,” a repre-

sentation that is obtained by transforming all capacitances

to the node at infinity in parallel to the node-pair capaci-

tances. This is obtained by a generalized star–triangle

transformation.

VIII. CONCLUSIONS

The PEEC models presented in this paper lead to a

flexible solution technique both in the time domain and

the frequency domain mainly due to the availability of

computer formulations. Essentially, three computer analy-

ses must be performed, viz., inductance computations,

capacitance computation, and network analysis. The series

TABLE I
LIST OFNETWORKELEMENTS

R~ = 50 L = 21 c = .61
p55 p12

~1 = 300 L = 59 c
p66

= .525
p13

%2 .50 = 20 c
JJp77

= .225
p14

CL1
=8 = 14.7 c

Lp13
= .725

p15

c = 27 L = -10.6 c
L2

= .285
P16 p23

L = 57.2 L =2 c = .275
pll p27 p25

L = 10.2 L = -7.7 c
p22 P36

= .125
p34

L = 62.1 L = 2.4 c = .275
p33 p45 p35

L = 11.6 L = -1 c – .225
p44 p57 p45 –

R in ohms; L m nSI; C in PF

resistance can usual] y be found from simple calculations.

Changes in the geometry are easily accommodated since

general computer solutions are involved in the task.

It is noted that the PEEC models are rather inefficient

for two-dimensional geometries, especially if a high degree

of resolution is required. For three-dimensional geometries,

very good results are obtained with a few elements only,

as is exemplified in Section VII.
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the Finite-Element Method

Problems

W. KINSNER, MEMBER, IEEE, AND EDWARD DELLA TORRE,

Abstract—An iterative approach to the finite-element method is

presented. Several finite-element formulations are presented for the

Laplace, Poisson, and Hehnholtz equations. These formulations

permit iterative solutions. The convergence of the vector sequences

generated by the iterative method is accelerated using successive

extrapolation and other methods. Accuracy and convergence of the

solutions are discussed.

I. INTRODUCTION

THE THEORETICAL background of the finite-

element method has been given by Aubin [1].

Other authors [2], [3] have introduced some practical

aspects of the method as applied to structural mechanics.

Sivester [4] and others [5], [16], [20]-[22] discussed

the method as applied to the electromagnetic field prob-

lems. Convergence of the method, as a function of the

relative size of the discretizing elements and the order of

the approximating polynomials, is discussed in many

recent mathematical and technical journals [6]. In

particular, explicit discretization errors are given in [1],

[2], [6], and [7], and some experimental results are given

in [5] and [8].

The variational formulation of waveguide problems,

using complete polynomials, leads to the general eigen-

value problem

AX = xl?% (1)

where A and B are symmetric positive-definite n x n

band matrices, A is the eigenvalue (s) and x the eigen-
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vector (s) associated
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with the particular eigenvalue (s).

It is noted that for the H modes A k only semidefinite.

The finite-difference formulation of these problems also

leads to (1), however, the matrix B is the identity matrix,

and A k not necessarily symmetric.

A variety of methods for solving (1) have been pre-

sented (e.g., [9], [10], and [12]). The finite-difference

solutions most frequently employ iterative techniques

and the finite-element solutions almost exclusively use

dwect methods.

Iterative methods for solving eigenvalue problems may

be divided into two categories. The first methods use the

fact that eigenvectors of a system form a linearly inde-

pendent set which spans an n dimensional space. The

methods in the second category use the property that the

generalized Rayleigh quotient

XTA X
Q=—

XTBX
(q

is equal to an eigenvalue and is stationary when x is the

corresponding eigenvector. A method using this property

with Fletcher–Powell iteration has been described [13].

These methods combined with the deflation or ortho-

gonalization yield, however, only partial eigensolutions,

i.e., the dominant and several closest eigenvectors, An

iterative method for the complete eigensolution shall be

presented.

II. FINITE-ELEMENT FORMULATION

Let R be either a simply or multiply-connected bounded

region in an n dimensional space V“ with boundar,y r.

The boundary 1? consists of a finite number of closed,

nonintersecting hypersurfaces rl, (h = O, ..”, ~) such


